
Workshop:
Building Good Fedora Packages

Pavel Raiskup
<praiskup@redhat.com>

Miroslav Suchý
<msuchy@redhat.com>

Slides originally created by
Tom 'spot' Callaway

 2

Workshop Overview
● Topic

– intro to RPM, create a simple RPM package from scratch

● Assumptions

– You know how to manually build “normal” software for
Linux

– You know how to use a text editor (I don't care which one)

– You have some familiarity with installing RPM packages

● Limitations

– This workshop covers a simple piece of software

– Most packages will be a little more complicated
● Some will be a LOT more complicated

● Information

– Feel free to ask question. Break?

 3

Things to do to prepare your
environment

● Packages that you will need installed

– fedora-packager, rpm-build, dnf (or yum on RHEL <8),
rpmdevtools, rpmlint, patch

● Get a copy of the tarball of source code we will be packaging:

● https://praiskup.fedorapeople.org/courses/packaging/

3

https://praiskup.fedorapeople.org/courses/packaging/

The Importance of Packaging

● Why when we have kube, podman,
docker, etc.?

● Standards compliance
● Know what is present, rpm -qa

● Simplify environment
● Know how to find it, rpm -qf

● Standardize deployments
● Know that you installed it, dnf history

● Sanity retention
● Know where it is installed, rpm -ql

● Reproducible
● Know how it was built

4

Fedora Packaging Guidelines
 Intended to document a set of “best practices”
 Living document, constantly being amended and improved
 Exceptions are possible

● Common exception cases are usually documented
● If you can justify doing something differently, it is

usually permissible, although, it may need to be
approved by the Fedora Engineering Steering
Committee (FESCo)

● Use common sense, but when in doubt, defer to the
guidelines

 https://docs.fedoraproject.org/en-US/packaging-guidelines/

●

5

https://docs.fedoraproject.org/en-US/packaging-guidelines/

A Quick Primer on RPM

● Red Hat Enterprise Linux and
Fedora use RPM (formerly Red Hat
Package Manager)

● Database driven solution
● Dependency tracking
● Built-in package verification, rpm -V

6

Myths about RPM
● Doesn't work well
● Hard to create packages
● Hard to install packages
● Hard to remove packages
● Dependency Nightmares

● Dependency Hell

7

Don't Slay The Dragon!
● RPM is misunderstood
● Works extremely well
● Package creation is easier than

you think
● Easy to install...
● Easy to remove...
● ... with good packages!

8

Dependency Resolution: dnf/yum
● RPM Pain Point: Dependency resolution

● Dependencies make RPM useful but also
complicated.

● RHEL/Fedora use yum/dnf to ease the pain
● Metadata is generated from tree of RPM

packages
● Yum/DNF uses metadata to resolve

dependencies
● Support for plugins, history, rollbacks
● Used to enable preupgrade, anaconda
● DNF use satsolver

9

Packaging as a standard (aka, why package at
all?)

● Auditing software usage
● What, where, when?

● Version control, rpm -q <pkg>
● Kickstart integration (anaconda)
● Minimizes risk

● Security
● Rogue Applications
● Licensing
● Trusted provider

10

Common mistakes new packagers make
● Spec file generators

● Remember, functional is
not the same as good.

● Packaging pre-built binaries,
not building from source.
● Not always possible, but

you shouldn't start here if
you can help it.

● Not permitted in Fedora
● Disabling check for

unpackaged files
● This is a recipe for

disaster.

11

Crash course in RPM Usage
● Binary Package (pkg-workshop-1-0.x86_64.rpm)

● File name is different from package name
● Install packages with file name

● rpm -ivh pkg-workshop-1-0.x86_64.rpm
● i for install, v for verbose, h for process hash

● Query installed package with package name
● rpm -ql pkg-workshop
● q for query, l for list files

● Remove package with package name
● rpm -eh pkg-workshop
● e for erase

12

https://praiskup.fedorapeople.org/courses/packaging/pkg-workshop-1-0.x86_64.rpm

Source RPM Overview
● Source Package (pkg-workshop-1-0.src.rpm)

● SRPMs contain sources/components/spec file
used to generate binary RPM packages

● Install SRPM package with SRPM file name
● rpm -ivh pkg-workshop-1-0.src.rpm
● i for install, v for verbose, h for process hash
● Source packages just install source into defined

source directory
● Red Hat default: ~/rpmbuild/SOURCES

● SRPMs do not go into the RPM database
● Remove installed SRPM with spec file name

● rpmbuild --rmsource --rmspec pkg-workshop.spec

13

https://praiskup.fedorapeople.org/courses/packaging/pkg-workshop-1-0.src.rpm

More Source RPM Overview

● Making a binary rpm from SRPM:
● rpmbuild --rebuild pkg-workshop-1-0.src.rpm

● Making a binary rpm from spec file
● rpmbuild -ba pkg-workshop.spec
● -b for build, -a for all packages, src and bin

● Making a patched source tree from spec file
● rpmbuild -bp goldfish.spec
● -b for build, -p for %prep only

● Patched source trees go into the builddir
● Red Hat default is ~/rpmbuild/BUILD

14

RPM Macros
 Just like variables in shell scripting

● They can act as integers or strings, but its easier to
always treat them as strings.

 Many common macros come predefined
● rpm --showrc will show you all the defined macros,

number explanation
● rpm --eval %macroname will show you what a

specific macro evaluates to
● Most system macros begin with an _ (e.g. %{_bindir})

 Macro formats
● %{foo} and %foo
● some macros have shell variable variant, e.g.

$RPM_BUILD_ROOT vs. %buildroot, they hold the same
value, but for your sanity (and guidelines), you should
consistently use one type of macro in a spec file.

●

15

https://unix.stackexchange.com/questions/350842/what-does-14-mean-in-a-dump-of-rpm-macros

RPM Comments
 To add a comment to your RPM spec file, simply start a

new line with a # symbol. Feel free to do this as we go, to
take notes for yourself. It never hurts to explain in a
comment why you did something, and it may save a bit of
your sanity later on.

 For example:
I have to delete this file, or else it will not build properly.
rm -f foo/bar/broken.c

 RPM ignores comment lines entirely.
● Well, to be fair, this isn't true, sometimes if you #

comment out a macro definition, it will see it and evaluate
it anyways. To comment out a macro definition, use two
%% instead of just one:

Before: # %configure
After: # %%configure

16

~/.rpmmacros : Use it or else

● Do it now. You'll thank me later. So will the kittens.
● Having an ~/.rpmmacros file enables custom macros

for your UID.
● Do NOT EVER build RPMS as root.

Let me repeat, do NOT EVER build RPMS as root.
● Make a rpmbuild tree in your home directory:

mkdir -p ~/rpmbuild{BUILD,BUILDROOT,RPMS,SOURCES,SPECS,SRPMS}
mkdir -p ~/rpmbuild/RPMS/{noarch,i386,i686}

● On Fedora, you can use the “rpmdev-setuptree” command from the
“rpmdevtools” package to accomplish the above steps.

● This is a great time to copy (not unpack) the enum-1.1.tar.bz2 source into
~/rpmbuild/SOURCES/

● You can make your own macros here, but be careful! Why?
● Accordingly, don't use them in %pre/%post.

17

Useful items for your ~/.rpmmacros
● Now would be a great time to open your text editor and add the following two

lines to ~/.rpmmacros
● %_smp_mflags -j3

● If your package SPEC has “make %{?_smp_mflags}, then this will tell it to
try to build across three CPUs.

● Why three? Three is a nice odd number that isn't too harsh for uniprocessor
systems but enough to expose code that doesn't build well in SMP
environments.

● %__arch_install_post /usr/lib/rpm/check-rpaths && /usr/lib/rpm/check-buildroot
● Fedora has an rpmdevtools package full of, well, rpm development tools.
● check-rpaths will make sure that your package doesn't have any hardcoded

rpaths (a bad thing, see guidelines)
● check-buildroot will make sure none of the packaged files have the

buildroot hardcoded (also a bad thing)
● other BRP scripts (BuildRoot Policy)

18

Cooking with Spec Files
● Think of a spec file as a recipe
● Lists the contents of the RPMS
● Describes the process to build, install the sources
● Required to make packages
● Very similar to shell script
● Sections/stages:

● Preamble
● Setup
● Build
● Install
● Clean
● Files
● Changelog

19

Understanding the Spec File: Preamble
● Initial section
● mostly metadata (no scripts)
● try `rpm -qi tar`
● Defines package characteristics

● Name/Version/Group/License
● Release tracks build changes
● Sources/Patches
● Requirements

● Build & Install
● Summary/Description
● Custom macro definitions

20

Notes on modern RPM : Preamble
 In the recent past, there was a mandatory field in the

Preamble section called “BuildRoot”
 This field defined the folder where the installed files would

go, before being placed into the final RPM
 It looked like this (in Fedora):

BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)

 As of the RPM in Fedora 12 (and RHEL 6), the BuildRoot
field is no longer necessary. %buildroot is predefined by
RPM.

● Older versions of RPM, most notably, the one in RHEL
5, still require this field.

 RPM now auto-sets the BuildRoot for each package to:
● ~/rpmbuild/BUILDROOT/%{name}-%{version}-%{release}.%{_build_arch}

 %_sourcedir => %_builddir => %buildroot => *.rpm

21

Workshop: Creating a new spec file
 A spec file is simply a text file
 RPM expects spec files to be in ~/rpmbuild/SPECS/

● Technically, it doesn't care, but for sanity, lets just keep
them there.

 Go ahead and open a new text file called
~/rpmbuild/SPECS/enum.spec

 Some editors (notably, vim, before rhbz#1724126, now it’s
in /usr/share/vim/vimfiles/template.spec) will generate a
spec template when you open a new spec file.

 rpmdev-newspec, (rhbz#1724126)

22

Workshop : Preamble Items

Here is a blank preamble section, this is where we will start
our package!

Name:
Version:
Release:
Summary:
License:
Group:
URL:
Source0:

%description

23

Workshop : Name

First, lets fill in the name of our package, which is “enum”.

Name: enum
Version:
Release:
Summary:
License:
URL:
Source0:

%description

 Note: Either use spaces or tabs to separate your fields.
Doesn't matter which one as long as you are consistent.

24

Workshop : Version

Next, lets fill in the version of our package, which is “1.1”.

Name: enum
Version: 1.1
Release:
Summary:
License:
URL:
Source0:

%description

 Hopefully, it should be obvious where I got the version
from. :) Sane upstreams will put the version in the source
tarball name. Other code may require digging.

25

Workshop : Release
The Release field is where you track your package builds,
starting from 1, and incrementing by 1 each time you make
a change.

Name: enum
Version: 1.1
Release: 1%{?dist}
Summary:
License:
URL:
Source0:

%description

 If your package is a pre or a post release, there are special
rules for handling Version and Release, see:
https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/

 Use /bin/rpmdev-vercmp if you are in doubt!

26

https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/

Wait, what is that %{?dist} thing?
 It is a macro!
 This macro exists in Fedora and RHEL 5+.
 It is there to add an identifier (or dist) tag to the end of the

release field.
 The ? means “if defined, use it, if not defined, evaluate to

nothing”
 So, if your release field is:

Release: 1%{?dist}

 Then, it evaluates to “1.fc13” on Fedora 13, and “1.el5” on
RHEL 5.

 You can see more information on the Dist Tag here:
https://docs.fedoraproject.org/en-US/packaging-guidelines/DistTag/

27

https://docs.fedoraproject.org/en-US/packaging-guidelines/DistTag/

Workshop : Summary
Summary is a single sentence describing what the
package does. It does not end in a period, and is no longer
than 80 characters.

Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License:
URL:
Source0:

%description

 NOTE: We'll fill in a longer description of the package in
%description

 rpm -qa --qf "%{SUMMARY}\n" | grep \\.$

28

Workshop : License
The License tag is where we put the short license identifier
(or identifiers) that reflect the license(s) of files that are
built and included in this package. It is easiest to determine
the correct license once we have an unpacked source tree,
so we'll put “TODO” in this field, and fix it later.

Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL:
Source0:

%description

29

Workshop : URL
The URL tag is a link to the software homepage.

Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL: https://fedorahosted.org/enum
Source0:

%description

30

Workshop : Source0

The Source0 tag tells the rpm what source file to use. You can have
multiple Source# entries, if you need them. Put the full upstream
URL where you downloaded the file.


Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL: https://fedorahosted.org/enum
Source0: https://fedorahosted.org/releases/e/n/enum/%
{name}-%{version}.tar.bz2

%description

 RPM is smart enough to know that a URL in the source path is
different from the file we downloaded and put in
~/rpmbuild/SOURCES/. It will look for the filename, minus the URL.

31

Wait, why did you use macros there?

 You should have noticed that I used
%{name} evaluates to whatever we have set as Name.

 %{version} evaluates to whatever we have set as Version.
 By doing this, it means that we should not have to change

the Source0 line as new versions release (or if upstream
changes the name).

 In fact, all of the fields in the preamble are defined as
macros, in the exact same way!

 In your spec files, you should try to use these macros
whenever possible.

32

Workshop : %description
%description indicates to RPM that you are entering a block of text
which describes the package. This can be multiple lines, but should
be concise and describe the functionality of the package. No line in
the %description can be longer than 80 characters and it must end
with a period. Try not to simply repeat the summary.

 %description
 Utility enum enumerates values (numbers) between two values, possibly
 further adjusted by a step and/or a count, all given on the command line.
 Before printing, values are passed through a formatter. Very fine control
 over input interpretation and output is possible.

33

Workshop : Complete Preamble

Name: enum

Version: 1.1

Release: 2%{?dist}

Summary: Seq- and jot-like enumerator

License: TODO

URL: https://fedorahosted.org/enum

Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2

%description

Utility enum enumerates values (numbers) between two values, possibly

further adjusted by a step and/or a count, all given on the command line.

Before printing, values are passed through a formatter. Very fine control

over input interpretation and output is possible.

34

Preamble: Other items
 Patch0 – If you need to apply a patch to the software being

packaged, you can add a numbered patch entry here:

 Patch0: enum-1.1-use-putchar.patch

 BuildRequires – This lists the packages which need to be
present to build the software. enum is very very simple. Most
packages have at least one BuildRequires:

BuildRequires: gcc (previously in minimal build chroot)

You can list as many packages as BuildRequires as you need,
although, you should try to avoid redundant items. Also,
BuildRequires can be versioned:

BuildRequires: bar >= 2.0

35

Preamble: Explicit Requires

 Requires – This lists any packages which we know are
necessary to be present on the system to run the software in our
package, once it is installed. RPM usually does a very good job
of autodetecting dependencies and adding them for you
especially when the software is in C, C++, or Perl.

● Be careful about adding explicit Requires here, as most
packages will not need any.

● You can add versioned Requires as needed, in exactly the
same way as versioned BuildRequires are done.

36

%if condition
 How to handle different OSes with one spec? Use macros and

conditions:
 ## BUGs!

%if 0%{?rhel} <= 6 || 0%{fedora} < 17

Requires: ruby(abi) = 1.8

%else

Requires: ruby(release)

%endif

37

Preamble: Explicit Provides
 Provides: tell rpm that this package provides something else.

E.g. Httpd provides webserver
 Note: boolean dependencies

38

https://rpm.org/user_doc/boolean_dependencies.html

Understanding the Spec: Setup
● Source tree is generated
● Sources unpacked here
● Patches applied
● Any pre-build actions
● Example of a %setup stage:

%prep
%setup -q
%patch0 -p1

● modern alternative: %autosetup -p1

39

Workshop : Prep & Setup

 First, we need to add a %prep line to tell rpm that we're in the
%prep phase.

 %setup is a very powerful (and complicated) “macro” that is
included with RPM. It is used to unpack Source# files, into
~/rpmbuild/BUILD/
So, below our %description text, we'll add:

%prep
%setup -q

 The -q option tells %setup to unpack the Source file quietly. If you
want to see what is happening here, you can omit it, but it usually is
a good thing to keep the build logs small and easy to read.

 By default, %setup unpacks Source0 only. It is possible to use
%setup to unpack multiple Source# files at once, for more details on
complicated use cases, see Maximum RPM docs

40

http://www.rpm.org/max-rpm/s1-rpm-inside-macros.html

Prep: Other items
 %patch0 – If we had a Patch0 entry in our spec, we would

apply it here with the matching %patch# macro. Some
common options that are good to know:

● -p# - the patch level (how many directories deep does
this patch apply)

● -b .foo – a patch suffix, appended to the original files
before patching. This is very useful when you need to
update or change a patch.

 So, for example, a spec with
Patch0: foo-1.2.3-fixbugs.patch
would also need:
%patch0 -p0 -b .fixbugs

 Note that patch patch use fuzzy 0!

41

Workshop : %prep
Here's what our spec looks like now. (try rpmbuild -bp enum.spec)
Name: enum

 Version: 1.1
 Release: 2%{?dist}
 Summary: Seq- and jot-like enumerator
 Group: Applications/System
 License: TODO
 URL: https://fedorahosted.org/enum
 Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2


 %description
 Utility enum enumerates values (numbers) between two values, possibly
 further adjusted by a step and/or a count, all given on the command line.
 Before printing, values are passed through a formatter. Very fine control
 over input interpretation and output is possible.


 %prep
 %setup -q 42

Understanding the Spec: Build
● Binary components created
● Use the included %configure macro for good

defaults
● Just build binary bits in sourcedir (no binary

rpms):
rpmbuild -bc helloworld.spec

● -b for build, -c for compile and stop
● Example of a %build section

%build
%configure
make %{?_smp_mflags}

%make_build
● If your package uses scons, cmake, alter

accordingly.

43

Workshop : Build

 Here's what our spec looks like now.


 ...
 %prep
 %setup -q




 %build
 %configure
 make %%{?_smp_mflags}
 %make_build

rpmbuild -bc enum.spec should work now, fix bugs!

44

Understanding the Spec: Install
● Creates buildroot (see %buildroot)
● Lays out filesystem structure
● Puts built files in buildroot
● Cleans up unnecessary installed files

45

Workshop – Fixing our Install Section
 Our build section is done now. Now, we need to fix up our

%install section. We know that we need to use “make
install” to install... try it now.

 ... but RPM doesn't want to install the files into their
positions on /. We need to install the files into our
BuildRoot, so that RPM can collect them and package
them up in the binary rpm file.

 Here's how you do this. Add this line below %install:

make DESTDIR=%{buildroot} install

%make_install

 That's all! The DESTDIR variable tells make to install into
our %{buildroot}.

 Some sloppy software Makefiles may not support
DESTDIR, if you come across one of these, you should try
to add support to the Makefile. Feel free to ask on #fedora-
devel or devel@lists.fedoraproject.org for help with this.

mailto:devel@lists.fedoraproject.org

Workshop : Install

BuildRequires: asciidoc
 ...
 %build
 %configure --disable-doc-rebuild
 make %{?_smp_mflags}
 %make_build


 %install
 rm -rf $RPM_BUILD_ROOT
 make install DESTDIR=%{buildroot}
 %make_install

47

Understanding the Spec: Files
● Files: List of package contents

● If it is not in %files, it is not in the
package.

● RPM WILL complain about unpackaged
files.

● Please, please, please. Don't ever
hack around this and generate files
in %post.

48

Workshop : Files

 We'll come back to this section at the end, when we know what to
put in it. I'll show you a trick to make it easier. For now, lets just
define the section, by adding the %files line below our %install
section:

%files

You may also add a “%defattr” line. The %defattr macro tells RPM
what to set the default attributes to for any and all files in the %files
section. The Fedora default is “(-,root,root,-)”. You will almost never
need to change this default, so you do not need to use it.

 %attr(<file mode>, <user>, <group>, <dir mode>)

http://ftp.rpm.org/max-rpm/s1-rpm-specref-files-list-directives.html

49

Understanding the Spec: Changelog
● Used to track package changes
● Not intended to replace source code Changelog
● Provides explanation for package users, audit trail
● Update on EVERY change
● Example of Changelog section:

%changelog
* Mon Jun 2 2008 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-3
- minor example changes

* Mon Apr 16 2007 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-2
- update example package

* Sun May 14 2006 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-1
- initial package

50

mailto:tcallawa@redhat.com
mailto:tcallawa@redhat.com
mailto:tcallawa@redhat.com

Workshop : Changelog

 Below our %files section, as the last item in the spec, add a line for
%changelog:

%changelog

Then, lets add our first changelog entry, in the proper layout:

* Fri Sep 21 2012 Your Name Here <youremail@here> - 1.1-1
- New package for Fedora

51

mailto:youremail@here

Workshop – Spec File Status
Name: enum
Version: 1.1
Release: 2%{?dist}
Summary: Seq- and jot-like enumerator
Group: Applications/System
License: TODO
URL: https://fedorahosted.org/enum
Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2

%description
Utility enum enumerates values (numbers) between two values, possibly
....

%prep
%setup -q

%build
%configure
%make_build

52

Workshop – Spec File Status

%install
%make_install

%files

%changelog
* Fri Sep 21 2012 Your Name Here <youremail@here> - 1.1-1
- New package for Fedora

53

mailto:youremail@here

Workshop – Building our source tree
 At this point, we can use our spec to build our source tree

and take a look around it.
 Save your spec file, and run (as a normal user):

rpmbuild -bp ~/rpmbuild/SPECS/enum.spec
 The -bp option tells rpmbuild to run through the %prep

stage, then stop.
 It should complete without errors, and you should see a

new directory in ~/rpmbuild/BUILD/enum-1.1/
 Now, we can use that source tree to help us fill in the

blanks we left earlier.

54

Workshop - Licensing
 As a responsible Fedora packager, it is important that you

get the licensing correct for your package. Here are some
general steps to follow:

● Is there a COPYING or LICENSE file? If so, read it, and
remember its file name, because we'll want to include it in
our package.

● Is there a README file? Read it, and look for any mention
of “Copyright” or “License”.

● Look at the actual source files in your text editor. Good
code projects will describe their license in the header
comments of each source file.

● Note all licenses that you see, then look them up in the
Fedora Licensing chart, found here:
https://fedoraproject.org/wiki/Licensing#Software_License_List

● What license do you find for enum?
55

https://fedoraproject.org/wiki/Licensing#Software_License_List

Workshop – Licensing Part Two
 enum is licensed under the BSD Licence. In Fedora, the

short name identifier for this license is BSD.
 Licensing can be very complicated! When in doubt, feel

free to email fedora-legal@lists.fedoraproject.org or
legal@fedoraproject.org to get help.

 Now, we need to fix our spec. Open it up in a text editor
again, and change the License tag from TODO to BSD

 Also, did you see that file COPYING? We need to make
sure they are installed in our package, so we'll add them to
our %files list, using a macro called “%doc” (in Fedora
newly %license).

56

mailto:fedora-legal@lists.fedoraproject.org
mailto:legal@fedoraproject.org

Workshop – Understanding %doc
 %doc is a special macro that is used to:
● Mark files as documentation inside an RPM
● Copy them directly from the source tree in

~/rpmbuild/BUILD/enum-1.1/ into the “docdir” for your
package, ensuring that your package always has them.

 So, lets add a line to %files for our license texts, so that it
now looks like this:

%files
%doc COPYING

%license COPYING

%doc ChangeLog
 Once you're done, save your spec file again.

57

Workshop – How Does Enum Build and Install?

 Now, we need to look in the ~/rpmbuild/BUILD/enum-1.1/
source tree to figure out how to build and install the code.

 Here's a big hint: Most Linux software projects use these
commands to build:

./configure
make

And these commands to install:

make install
 Some packages will not be so clean. Look for INSTALL or

README to describe it, or the project website. When in
doubt, ask!

58

History Lessons
 Before Fedora 12 (and in RHEL 5 or older), it used to be

necessary to manually remove the %{buildroot} as the very
first step in the %install stage, like this:

%install
rm -rf %{buildroot}

With Fedora 12 (or newer) RPM, the %install stage
automatically deletes the %{buildroot} for you as the very
first step, so this is no longer necessary.

 Also, it used to be necessary to define a %clean section to
clean up the %{buildroot} at the end of the package build
process, it looked like this:

%clean
rm -rf %{buildroot}

With Fedora 12+ RPM, this %clean section is handled
internally and does not need to be explicitly defined.

Workshop - Status
 Okay, history lesson over. Your spec should have a

fleshed out %build and %install, which look like this:

see konsole


 Save your spec file out. There is one thing we're missing
from our spec, the list of files to go into %files! I'm about to
share a clever trick on how to make it easier.

60

Workshop – Build our package

 Now, as a normal user (remember, no package building as
root, EVER), run:

rpmbuild -ba ~/rpmbuild/SPECS/enum.spec

 The -ba options tell rpmbuild to build “all”, source and
binary packages.

 This is going to run through %build, then %install ... and
then fail, because we don't have a complete %files list.



61

Workshop – Build our package

 But, when it fails, it does us a favor, check out the output!

RPM build errors:
 Installed (but unpackaged) file(s) found:
 /usr/bin/enum
 /usr/share/man/man1/enum.1.gz


 RPM has just told us what files are missing from the %files
list!

62

Workshop – Adding missing %files
 %files
 %license COPYING
 %doc ChangeLog
 %_mandir/man1/enum.1*
 %_bindir/enum

63

Workshop – Almost done
 At this point, make sure you have all useful documentation

listed in %files as %doc, not just license text. Look for
README and ChangeLog.

 INSTALL is usually not very helpful, do not install it
 That should be it! Look over your spec and make sure

you're happy with it, then save it, and run:

rpmbuild -ba ~/rpmbuild/SPECS/enum.spec

64

Workshop – Status Check
 At this point, you should now have a enum-1.1-1.src.rpm

and one arch rpm: enum-1.1-1.fc*.*.rpm (the Fedora
versions and architectures will vary, depending on your
system).

 If so, congratulations! You're on your way to really
understanding how to make good Fedora packages!

 If it failed, no worries. Take a look at the last few lines that
RPM output, and it will probably give you an idea of what
to fix. Feel free to ask me for help.

 The next step is to check the package for minor issues,
and you use a tool called “rpmlint” for this. Run:

rpmlint ~/rpmbuild/SRPMS/enum-1.1-1.src.rpm
~/rpmbuild/RPMS/*/enum*.rpm

 If you find any errors, try to correct them in the spec and
rebuild. If you do make changes to your spec file,
increment your Version and add a new changelog entry at
the top of your %changelog section!

Best Practices
 K.I.S.S.
 Use patches, not rpm hacks
 Avoid scriptlets, minimize pre/post wherever possible

● Leverage triggers instead (fedora docs)
 Use %changelog
 Look at other Fedora packages

● Huge tarball with all spec files
 Use macros sanely

● Be consistent
● Utilize system macros

66

https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch10s02.html
https://src.fedoraproject.org/lookaside/rpm-specs-latest.tar.xz

Better than Best Practices
● Use rpmlint, fix warnings/errors
● Include configs/scripts as Source

files
● Comment!

● ...but keep it legible
● Think of the guy who will have

to fix your package when you
leave.

● Don't ever call /bin/rpm* from
inside a spec file.
● Remember Ghostbusters?

Crossing the streams? Bad.

67

Good Packages Put You In Control
● Practice makes perfect
● Integration with the Fedora

tools makes it easier for
users to get and use that
software!

● Simplify, standardize, save
time and sanity
● Build once, install many.

68

Useful Links
 Fedora Packaging Guidelines:

https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines

 Maximum RPM:
http://www.rpm.org/max-rpm-snapshot/

 RPM Packaging Guide:
https://rpm-packaging-guide.github.io/

 Fedora GIT Tree (contains lots of example specs)
https://src.fedoraproject.org/

 Fedora packaging mailing list
https://admin.fedoraproject.org/mailman/listinfo/packaging

 Rpmlint website:
http://rpmlint.zarb.org/cgi-bin/trac.cgi

 Czech only, Rukověť baliče RPM:
http://www.abclinuxu.cz/clanky/navody/rukovet-balice-rpm-i-uvod

69

https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines
http://www.rpm.org/max-rpm-snapshot/
https://rpm-packaging-guide.github.io/
https://src.fedoraproject.org/
https://admin.fedoraproject.org/mailman/listinfo/packaging
http://rpmlint.zarb.org/cgi-bin/trac.cgi
http://www.abclinuxu.cz/clanky/navody/rukovet-balice-rpm-i-uvod

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

