
Workshop:
Building Good Fedora Packages

Pavel Raiskup
<praiskup@redhat.com>

Miroslav Suchý
<msuchy@redhat.com>

Slides originally created by
Tom 'spot' Callaway

Things to do to prepare your
environment

● Packages that you will need installed
● fedora-packager, rpm-build, dnf (or yum on RHEL < 8), rpmdevtools, rpmlint,

patch
● Get a copy of the files we will be working with:
● https://praiskup.fedorapeople.org/courses/packaging/
● Use the “rpmdev-setuptree” command from the “rpmdevtools” package to

create ~/rpmbuild directory tree

2

https://praiskup.fedorapeople.org/courses/packaging/

Workshop Overview
• Topic: intro to RPM, create a simple RPM package from scratch
● Assumptions

●You know how to use a text editor (no matter which one)
●You know how to manually build “normal” software for Linux
●You know what is a patch and how to apply it

● Limitations
●This workshop covers a simple piece of software
●Most packages will be a bit more complicated

●Some will be a LOT more complicated
● Information

●Feel free to ask questions! Break?

Objectives - RPM Package
Management

• Why to use RPM packages?
• Can package be problematic?
• What is source and binary package?
• Package file name vs. package name
• Basic commands

Packaging as a standard (aka, why package at all?)

● Auditing software usage
● What, where?

● Version control
● Reproducible installations (Kickstart

integration via anaconda, Ansible)
● Minimizes risk

● Security
● Rogue Applications
● Licensing
● Trusted provider

● So you see why `sudo make install` is
just not enough...

5

Problems with RPMs? No.
● RPM is misunderstood
● Works extremely well
● Package creation is easier than

you think
● Easy to install...
● Easy to remove...

● ... with good packages!
● You can write good software and

bad software
● And you can write good packages

and bad packages

6

Crash course in RPM Usage
● Binary (built) Package pkg-workshop-1-0.x86_64.rpm

● File name is different from package name
● Install packages with file name

● rpm -ivh pkg-workshop-1-0.x86_64.rpm
● i for install, v for verbose, h for process hash

● Query installed package with package name
● rpm -ql pkg-workshop
● q for query, l for list files

● Remove package with package name
● rpm -eh pkg-workshop
● e for erase

● List all installed packages in RPM database
● rpm -qa
● rpm -qi <pkgname> (info about package)

● There’s DNF/YUM on top of RPM databse, but that’s not
the topic for today

● RPM is archive (try /bin/mc to step inside)

7

https://praiskup.fedorapeople.org/courses/packaging/pkg-workshop-1-0.x86_64.rpm

Source RPM Overview
● Source Package (pkg-workshop-1-0.src.rpm)

● SRPMs contain sources/components/spec file used to
generate binary RPM packages

● Install SRPM package with SRPM file name
● rpm -ivh pkg-workshop-1-0.src.rpm
● i for install, v for verbose, h for process hash
● Source packages just install source into defined

source directory
● Red Hat default: ~/rpmbuild/SOURCES

● SRPMs do not go into the RPM database
● Remove installed SRPM with spec file name

● rpmbuild --rmsource --rmspec pkg-workshop.spec

8

https://praiskup.fedorapeople.org/courses/packaging/pkg-workshop-1-0.src.rpm

More Source RPM Overview

● Making a binary rpm from SRPM:
● rpmbuild --rebuild pkg-workshop-1-0.src.rpm

● Making a binary rpm from spec file
● rpmbuild -ba pkg-workshop.spec
● -b for build, -a for all packages, src and bin

● Note: build is done in “builddir” (%_builddir)

9

Objectives - Spec file

● What is a SPEC file
● Generators
● Basic syntax:

● RPM Macros
● Comments

● Best practices

10

Cooking with Spec Files
● It’s a simple text file
● Think of a spec file as a recipe
● Lists the contents of the RPMS
● Describes the process to build, install the sources
● Required to make packages
● Contains shell scripts
● Sections/stages:

● Preamble
● Setup
● Build
● Install
● Clean
● Files
● Changelog

11

Common mistakes new packagers make
● Spec file generators

● Remember, functional is not
the same as good.

● Packaging pre-built binaries,
not building from source.

● (Technically) possible, but
you shouldn't start here if
you can help it

● Not permitted in Fedora
● Disabling automatic checks

● This is a recipe for disaster.
● for example “installed but

unpacked” check

12

RPM Macros
■ Similar to shell variables

● They can act as integers or strings, but its easier to always
treat them as strings

● Recursively expanded, %_bindir => %{_exec_prefix}/bin =>
/usr/bin

■ Macro formats
● %{foo} and %foo
● some macros have shell variable variant, e.g.

$RPM_BUILD_ROOT vs. %buildroot, they hold the same
value, but for your sanity (and guidelines), you should
consistently use one type of macro in a spec file.

■ Many common macros come predefined
● rpm --showrc will show you all the defined macros,

number explanation
● rpm --eval %macroname will show you what a

specific macro evaluates to
● Most system macros begin with an _ (e.g. %{_bindir})

13

https://unix.stackexchange.com/questions/350842/what-does-14-mean-in-a-dump-of-rpm-macros

RPM Comments
■To add a comment to your RPM spec file, simply start a new line
with a # symbol. Do this as we go today!
●Don’t `Version: 1 # beta, but cool!`

■For example:
I have to delete this file, or else it will not build properly.
rm -f foo/bar/broken.c
■RPM ignores comment lines entirely.
●Well, to be fair, this isn't true, if you # comment out a macro

definition, it will evaluate it anyways. Use double-%:
Before: # %configure
After: # %%configure

●Note that macros are turing complete, e.g. %(rm -rf stg)

14

Custom rpm macros ~/.rpmmacros

● Syntax: %macroname value
● Overrides for system-defined macros /usr/lib/rpm/
● Can be overwritten directly in spec file

● Syntaxe: %global macroname value
● You can make your own macros here, be careful! (why?)

● .. so, don't use them in spec file
● example with %_smp_mflags

15

Fedora Packaging Guidelines
■Intended to document a set of “best practices”
■Living document, constantly being amended and improved
■Exceptions are possible

●Common exception cases are usually documented
●If you can justify doing something differently, it is usually

permissible, although, it may need to be approved by the
Fedora Engineering Steering Committee (FESCo)

●Use common sense, but when in doubt, defer to the
guidelines

■https://docs.fedoraproject.org/en-US/packaging-guidelines/

16

https://docs.fedoraproject.org/en-US/packaging-guidelines/

Objectives - real-life spec - preamble

● What is a preamble?
● What tags can be defined in a preamble?
● Write simple preamble section.

17

Understanding the Spec File: Preamble
● Initial section
● mostly metadata (no scripts)

● defines output of `rpm -qi tar`
● Defines package characteristics

● Name/Version/Group/License
● Release tracks build changes
● Sources/Patches
● Requirements, for

● Build & Install
● Summary/Description
● Custom macro definitions

18

Workshop: Creating a new spec file
●A spec file is simply a text file
●RPM expects spec files to be in ~/rpmbuild/SPECS/

● Technically, it doesn't care, but for sanity, lets just keep them there.
●Go ahead and open a new text file called ~/rpmbuild/SPECS/enum.spec
●Some editors will generate a spec template when you open a new spec file
(notably, vim before rhbz#1724126, now it’s in
/usr/share/vim/vimfiles/template.spec)

●rpmdev-setuptree && rpmdev-newspec

19

Workshop : Preamble Items

Here is a blank preamble section, this is where we will start our
package!

Name:
Version:
Release:
Summary:
License:
Group:
URL:
Source0:

%description

20

Workshop : Name

■First, lets fill in the name of our package, which is “enum”.
■
Name: enum
Version:
Release:
Summary:
License:
URL:
Source0:

%description

■Note: Either use spaces or tabs to separate your fields. Doesn't
matter which one as long as you are consistent.

21

Workshop : Version

■Next, lets fill in the version of our package, which is “1.1”.
■
Name: enum
Version: 1.1
Release:
Summary:
License:
URL:
Source0:

%description

■Hopefully, it should be obvious where I got the version from. :)
Sane upstreams will put the version in the source tarball name.
Other code may require digging.

22

Workshop : Release
■The Release field is where you track your package builds, starting
from 1 (guidelines), and incrementing by 1 each time you make a
change.
■
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary:
License:
URL:
Source0:

%description

■If your package is a pre or a post release, there are special rules
for handling Version and Release, see:
https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/

■Use /bin/rpmdev-vercmp if you are in doubt!

23

https://docs.fedoraproject.org/en-US/packaging-guidelines/Versioning/

Wait, what is that %{?dist} thing?
■It is a macro!
■It is there to add an identifier (or dist) tag to the end of the release
field. For humans!
■The ? means “if defined, use it, if not defined, evaluate to nothing”
■So, if your release field is:

Release: 1%{?dist}

■Then, it evaluates to “1.fc33” on Fedora 33, and “1.el8” on RHEL 8.
■You can see more information on the Dist Tag here:
■https://docs.fedoraproject.org/en-US/packaging-guidelines/DistTag/

24

https://docs.fedoraproject.org/en-US/packaging-guidelines/DistTag/

Workshop : Summary
■Summary is a single sentence describing what the package does.
It does not end in a period, and is no longer than 80 characters.
■
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License:
URL:
Source0:

%description

■NOTE: We'll fill in a longer description of the package in
%description

25

Workshop : License
■The License tag is where we put the short license identifier (or
identifiers) that reflect the license(s) of files that are built and
included in this package. It is easiest to determine the correct
license once we have an unpacked source tree, so we'll put
“TODO” in this field, and fix it later.
■
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL:
Source0:

%description

26

Workshop : URL
■The URL tag is a link to the software homepage.
■
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL:
Source0:

%description

27

Workshop : Source0

■The Source0 tag tells the rpm what source file to use. You can have
multiple Source# entries, if you need them. Put the full upstream URL where
you downloaded the file.

■
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL: https://fedorahosted.org/enum
Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%
{version}.tar.bz2

%description

■ rpmbuild takes the basename. Full URL is mostly for humans.

28

Wait, why did you use macros there?

■You should have noticed that I used
%{name} evaluates to whatever we have set as Name.
■%{version} evaluates to whatever we have set as Version.
■By doing this, it means that we should not have to change the
Source0 line as new versions release (or if upstream changes the
name).
■In fact, all of the fields in the preamble are defined as macros, in
the exact same way!
■In your spec files, you should try to use these macros whenever
possible.

29

■This is a great time to copy (not unpack) the enum-1.1.tar.bz2 source into
~/rpmbuild/SOURCES/

Copy sources to ~/rpmbuild

30

Workshop : %description
■%description indicates to RPM that you are entering a block of text which
describes the package.
■This can be multiple lines, but should be concise and describe the
functionality of the package.
■No line in the %description can be longer than 80 characters and it must
end with a period.
■Try not to simply repeat the summary.

%description
Utility enum enumerates values (numbers) between two values, possibly
further adjusted by a step and/or a count, all given on the command line.
Before printing, values are passed through a formatter. Very fine control
over input interpretation and output is possible.

31

Workshop : Complete Preamble

Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator

License: TODO
URL: https://fedorahosted.org/enum
Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2

%description
Utility enum enumerates values (numbers) between two values, possibly
further adjusted by a step and/or a count, all given on the command line.
Before printing, values are passed through a formatter. Very fine control
over input interpretation and output is possible.

32

Preamble: Explicit Requires
●Requires – This lists any packages which we know are necessary to be
present on the system to run the software in our package, once it is
installed.

●RPM usually does a very good job of autodetecting dependencies and
adding them for you especially when the software is in C, C++, Perl, etc.

●Think twice if you need to be explicit.
●Requires can be versioned:

● Requires: bar >= 2.0
● Requires: bar < 10.0.0

33

Preamble: BuildRequires
● BuildRequires – This lists the packages which need to be present to build
the software.

● Most packages have at least one BuildRequires:

BuildRequires: make

● We will see later if our package need some BuildRequires
● You can list as many packages as BuildRequires as you need, although,
you should try to avoid redundant items. Also, BuildRequires can be
versioned:

BuildRequires: bar >= 2.0

34

Preamble: Patch<N>

■Patch0 – If you need to apply a patch to the software being packaged,
you can add a numbered patch entry here:

 Patch0: enum-1.1-use-putchar.patch

■Patch can be a full URL as well Source<N>, if it makes sense

%if condition

■How to handle different OSes with one spec? Use macros and conditions:
BUGs!
%if 0%{?rhel} <= 6 || 0%{?fedora} < 17
Requires: ruby(abi) = 1.8
%else
Requires: ruby(release)
%endif

36

Preamble: Explicit Provides

■Provides: tell rpm that this package provides something else. E.g. Httpd
provides webserver, nginix provides webserver and some package
Requires webserver.
■Note: RPM 4.13+ boolean dependencies

● Requires: (pkgA or pkgB or pkgC)

37

https://rpm-software-management.github.io/rpm/manual/boolean_dependencies.html

Objectives - real spec - continued

In this chapter you will:
● learn about main sections of SPEC file: prep, build, install, files and

changelog
● learn about licenses
● learn about scriptlets
● how to build the binary package from SPEC

38

Understanding the %prep section (setup)
● Source tree is generated in

~/rpmbuild/BUILD
● Sources unpacked here
● Patches applied
● Any pre-build actions
● Example of a %setup stage:

%prep
%setup -q
%patch0 -p1

● modern alternative: %autosetup -p1

39

Workshop : Prep & Setup

■First, we need to add a %prep line to tell rpm that we're in the %prep phase.
■%setup is a very powerful (and complicated) “macro” that is included with
RPM. It is used to unpack Source# files, into ~/rpmbuild/BUILD/
So, below our %description text, we'll add:

%prep
%setup -q

■The -q option tells %setup to unpack the Source file quietly. If you want to
see what is happening here, you can omit it, but it usually is a good thing to
keep the build logs small and easy to read.
■By default, %setup unpacks Source0 only. It is possible to use %setup to
unpack multiple Source# files at once, for more details on complicated use
cases, see Maximum RPM docs

40

http://ftp.rpm.org/max-rpm/s1-rpm-inside-macros.html

Prep: Other items

■%patch0 – If we had a Patch0 entry in our spec, we would apply it
here with the matching %patch# macro. Some common options
that are good to know:

●-p# - the patch level (how many directories deep does this
patch apply)

●-b .foo – a patch suffix, appended to the original files before
patching. This is very useful when you need to update or
change a patch.

■So, for example, a spec with
Patch0: enum-1.1-use-putchar.patch
would also need:
%patch0 -p0 -b .use-putchar
■Note that patch patch use fuzzy 0!

41

Workshop : %prep
■Here's what our spec looks like now (try rpmbuild -bp enum.spec)

Name: enum

Version: 1.1

Release: 1%{?dist}

Summary: Seq- and jot-like enumerator

License: TODO

URL: https://fedorahosted.org/enum

Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2

Patch0: enum-1.1-use-putchar.patch

%description

Utility enum enumerates values (numbers) between two values, possibly

further adjusted by a step and/or a count, all given on the command line.

Before printing, values are passed through a formatter. Very fine control

over input interpretation and output is possible.

%prep

%setup -q

%patch0 -p0 -b .use-putchar

 42

Understanding the Spec: Build
• Binary components created (“compiled”) within

~/rpmbuild/BUILD
• Use the included %configure macro for good

defaults
• Example of a %build section

%build
%configure
%make_build

• If your package uses “scons”, “cmake”, alter
accordingly (we’ll show later how to find out).

43

Workshop : Build

■Here's what our spec looks like now.

...
%prep
%setup -q

%build
%configure
%make_build

■command `rpmbuild -bc enum.spec` should work now, fix bugs!

44

Understanding the Spec: Install
● Creates buildroot, ~/rpmbuild/BUILDROOT - a directory where all build artifacts are installed

on the final path. This can include all non-compiled files which should be in final package:
documentation, examples, man pages, data files.

● Lays out filesystem structure
○ mkdir -p %{buildroot}/var
○ mkdir -p %{buildroot}/%{_bindir}

● Puts built files in buildroot
○ cp -a result-of-make/my-application %{buildroot}/%{_bindir}/my-application

● Cleans up unwanted installed files (if needed):
%make_install # installs too much stuff
rm -rf %{buildroot}/{_datadir}/non-free/

45

Workshop – Fixing our Install Section
■Our build section is done now. Now, we need to fix up our %install
section. We know that we need to use “make install” to install... try it now.
■... but RPM doesn't want to install the files into their positions on /. We
need to install the files into our BuildRoot, so that RPM can collect them
and package them up in the binary rpm file.
■Here's how you do this. Add this line below %install:

make DESTDIR=%{buildroot} install # old variant
■%make_install

■That's all! The DESTDIR variable tells make to install into our %
{buildroot}.
■Some sloppy software Makefiles may not support DESTDIR, if you come
across one of these, you should try to add support to the Makefile. Feel
free to ask on #fedora-devel or devel@lists.fedoraproject.org for help with
this.

mailto:devel@lists.fedoraproject.org

Workshop : Install

BuildRequires: asciidoc
...
%build
%configure --disable-doc-rebuild
make %{?_smp_mflags}
%make_build

%install
rm -rf $RPM_BUILD_ROOT # don’t do this nowadays
make install DESTDIR=%{buildroot} # old variant
%make_install

47

Understanding the Spec: %files
● Files: List of package contents

● If it is not in %files, it is not in the package.
● RPM WILL complain about unpackaged

files.

● We'll come back to this section at the end,
when we know what to put in it. For now, lets
just define the section, by adding the %files
line below our %install section:

%files

48

Understanding the Spec: Changelog
• Used to track package changes
• Not intended to replace source code Changelog
• Provides explanation for package users, audit trail
• Update on EVERY change
• Example of Changelog section:

%changelog
* Mon Jun 2 2008 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-3
- minor example changes

* Mon Apr 16 2007 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-2
- update example package

* Sun May 14 2006 Tom “spot” Callaway <tcallawa@redhat.com> 1.1-1
- initial package

49

mailto:tcallawa@redhat.com
mailto:tcallawa@redhat.com
mailto:tcallawa@redhat.com

Workshop : Changelog

●Below our %files section, as the last item in the spec, add a line for changelog
%changelog

●Then, lets add our first changelog entry, in the proper layout:
* Fri Sep 21 2012 Your Name Here <youremail@here> - 1.1-1
- New package for Fedora

● You may use “rpmdev-bumpspec enum.spec” to do the most hard work for you.

50

about:blank

Workshop – Spec File Status
Name: enum
Version: 1.1
Release: 1%{?dist}
Summary: Seq- and jot-like enumerator
License: TODO
URL: https://fedorahosted.org/enum
Source0: https://fedorahosted.org/releases/e/n/enum/%{name}-%{version}.tar.bz2

%description
Utility enum enumerates values (numbers) between two values, possibly
....

%prep
%setup -q

%build
%configure
%make_build

%install
%make_install

%files

%changelog
* Fri Sep 21 2012 Your Name Here <youremail@here> - 1.1-1
- New package for Fedora

51

about:blank

Workshop – Building our source tree

■Now, we can use that source tree to help us fill in the blanks we
left earlier - License: TODO

■At this point, we can use our spec to build our source tree and
take a look around it.
■Save your spec file, and run (as a normal user):
■rpmbuild -bp ~/rpmbuild/SPECS/enum.spec
■The -bp option tells rpmbuild to run through the %prep stage, then
stop.
■It should complete without errors, and you should see a new
directory in ~/rpmbuild/BUILD/enum-1.1/

52

Workshop - Licensing
■As a responsible Fedora packager, it is important that you do the
licensing correct for your package. Here are some general steps to
follow:
● Is there a COPYING or LICENSE file? If so, read it, and

remember its file name, because we'll want to include it in our
package.

● Is there a README file? Read it, and look for any mention of
“Copyright” or “License”.

●Look at the actual source files in your text editor. Some code
projects will describe their license in the header comments of
each source file.

●Note all licenses that you see, then look them up in the Fedora
Licensing chart, found here:
https://fedoraproject.org/wiki/Licensing#Software_License_List

●What license do you find for enum?

53

https://fedoraproject.org/wiki/Licensing#Software_License_List

Workshop – Licensing Part Two

■enum is licensed under the BSD Licence. In Fedora, the short
name identifier for this license is BSD.
■Licensing can be very complicated! When in doubt, feel free to
email fedora-legal@lists.fedoraproject.org or
legal@fedoraproject.org to get help.
■Now, we need to fix our spec. Open it up in a text editor again,
and change the License tag from TODO to BSD
■Also, did you see that file COPYING? We need to make sure they
are installed in our package, so we'll add them to our %files list,
using a macro called “%license” (formerly %doc was used).
■licensecheck helper
■License changes must be announced on developer list
■ Multiple Licensing Scenarios: LGPLv2+ and MIT

54

mailto:fedora-legal@lists.fedoraproject.org
mailto:legal@fedoraproject.org
https://fedoraproject.org/wiki/Packaging:LicensingGuidelines#Multiple_Licensing_Scenarios

Workshop – Understanding %doc
■%doc is a special macro that is used to:
●Mark files as documentation inside an RPM
●Copy them directly from the source tree in

~/rpmbuild/BUILD/enum-1.1/ into the “docdir” for your package,
ensuring that your package always has them.

■So, lets add a line to %files for our license texts, so that it now
looks like this:

%files
%license COPYING
%doc ChangeLog

■Once you're done, save your spec file again.

55

Workshop – How Does Enum Build and Install?

■Now, we need to look in the ~/rpmbuild/BUILD/enum-1.1/ source
tree to figure out how to build and install the code.
■Here's a big hint: Many Linux software projects use these
commands to build:

./configure
make

And these commands to install:

make install
■Some packages will not be so clean. Look for INSTALL or
README to describe it, or the project website. When in doubt, ask!

56

History Lessons

■Before Fedora 12 (and in RHEL 5 or older), it used to be
necessary to manually remove the %{buildroot} as the very first
step in the %install stage, like this:

%install
rm -rf %{buildroot}

With Fedora 12 (or newer) RPM, the %install stage automatically
deletes the %{buildroot} for you as the very first step, so this is no
longer necessary.
■Also, it used to be necessary to define a %clean section to clean
up the %{buildroot} at the end of the package build process, it
looked like this:

%clean
rm -rf %{buildroot}

With Fedora 12+ RPM, this %clean section is handled internally
and does not need to be explicitly defined.

History Lessons #2

■In the recent past, there was a mandatory field in the Preamble
statement called “BuildRoot” - it is now defined automatically.
(EL6+), you can drop such lines:

BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)

Workshop - Status

■Okay, history lesson over. Your spec should have a fleshed out
%build and %install, which look like this:

see console

■Save your spec file out. There is one thing we're missing from our
spec, the list of files to go into %files! I'm about to share a clever
trick on how to make it easier.

59

Workshop – Build our package

■Now, as a normal user run:

rpmbuild -ba ~/rpmbuild/SPECS/enum.spec

■The -ba options tell rpmbuild to build “all”, source and binary
packages.
■This is going to run through %build, then %install ... and then fail,
because we don't have a complete %files list specified

60

Workshop – Build our package

■But, when it fails, it does us a favor, check out the output!

 RPM build errors:
 Installed (but unpackaged) file(s) found:

 /usr/bin/enum

 /usr/lib/debug/usr/bin/enum-1.1-1.fc33.x86_64.debug

 /usr/share/man/man1/enum.1.gz

■RPM has just told us what files are missing from the %files list!

61

Workshop – Adding missing %files
%files
%license COPYING
%doc ChangeLog
%{_mandir}/man1/enum.1*
%{_bindir}/enum

We skipped the debug file, because once we added the corresponding executable
then rpmbuild picks the debug file automatically.

62

Workshop : Files

■You may also add a “%defattr” line. The %defattr macro tells RPM what to
set the default attributes to for any and all files in the %files section. The
Fedora default is “(-,root,root,-)”. You do not need to define it again.

%attr(<file mode>, <user>, <group>, <dir mode>)

■http://ftp.rpm.org/max-rpm/s1-rpm-specref-files-list-directives.html

63

http://ftp.rpm.org/max-rpm/s1-rpm-specref-files-list-directives.html

Workshop – Almost done

■At this point, make sure you have all useful documentation listed
in %files as %doc, not just the license text. Look for README and
ChangeLog.
■INSTALL is usually not very helpful, do not install it
■That should be it! Look over your spec and make sure you're
happy with it, then save it, and run:

rpmbuild -ba ~/rpmbuild/SPECS/enum.spec

64

Workshop – Status Check
■At this point, you should now have a enum-1.1-1.src.rpm and one
arch rpm: enum-1.1-1.fc*.*.rpm (the Fedora versions and
architectures will vary, depending on your system).
■If so, congratulations! You're on your way to really understanding
how to make good Fedora packages!
■If it failed, no worries. Take a look at the last few lines that RPM
output, and it will probably give you an idea of what to fix. Feel free
to ask me for help.
■The next step is to check the package for minor issues, and you
use a tool called “rpmlint” for this. Run:

rpmlint ~/rpmbuild/SRPMS/enum-1.1-1.src.rpm
~/rpmbuild/RPMS/*/enum*.rpm
■If you find any errors, try to correct them in the spec and rebuild. If
you do make changes to your spec file, increment your Version and
add a new changelog entry at the top of your %changelog section!

- Shell code sections executed at certain times during package
installation, %pre, %post, %preun, %postun.

- Scriptlets are non-interactive, no arguments, macros are expanded at
package build time and baked-into the RPM file

- Remember, RPM DB doesn’t track what is done here
- The best intentions can easily go evil (it is hard to get scriptlets right),

but sometimes are necessary (e.g. create system users during package
installation)

- More info: RPM packaging guide and Fedora guidelines.

Bonus - RPM Scriptlets

https://rpm-packaging-guide.github.io/#triggers-and-scriptlets
https://docs.fedoraproject.org/en-US/packaging-guidelines/Scriptlets/

Best Practices
■K.I.S.S.
■Use patches, not rpm hacks
■Avoid scriptlets, minimize wherever possible

●Leverage triggers instead (fedora docs)
■Use %changelog
■Look at and learn from other Fedora packages

●Huge tarball with all spec files
■Use macros sanely

●Be consistent
●Utilize system macros

67

https://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch10s02.html
https://src.fedoraproject.org/lookaside/rpm-specs-latest.tar.xz

Do not build a package as root
● Do NOT EVER build RPMS as root.

Let me repeat, do NOT EVER build RPMS as root.

%install
%make_install
remove patent protected files
rm -rf $RPM_TYPO_BUILDROO/var/

!!!! THIS WILL REMOVE /var on your system !!!! Why?

68

Better than Best Practices
● Use rpmlint, fix warnings/errors
● Include configs/scripts as Source files
● Comment!

● ...but keep it legible
● Think of the guy who will have to fix your package when you

leave.
● Don't ever call /bin/rpm* from inside a spec file.

● RPM is NOT re-entrant

69

Good Packages Put You In Control
● Practice makes perfect
● Integration with the Fedora

tools makes it easier for users
to get and use that software!

● Simplify, standardize, save time
and sanity

● Build once, install many.

70

Useful Links
■ Fedora Packaging Guidelines:

https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines

■ Maximum RPM:
http://www.rpm.org/max-rpm-snapshot/

■ RPM Packaging Guide:
https://rpm-packaging-guide.github.io/

■ Fedora GIT Tree (contains lots of example specs)
https://src.fedoraproject.org/

■ Fedora packaging mailing list
https://admin.fedoraproject.org/mailman/listinfo/packaging

■ Rpmlint website:
http://rpmlint.zarb.org/cgi-bin/trac.cgi

■ RPM.org documentation
http://rpm.org/documentation.html

■ RPM Packaging Guide: https://rpm-packaging-guide.github.io/

71

https://docs.fedoraproject.org/en-US/packaging-guidelines/
https://fedoraproject.org/wiki/Packaging:ReviewGuidelines
http://www.rpm.org/max-rpm-snapshot/
https://rpm-packaging-guide.github.io/
https://src.fedoraproject.org/
https://admin.fedoraproject.org/mailman/listinfo/packaging
http://rpmlint.zarb.org/cgi-bin/trac.cgi
http://rpm.org/documentation.html
https://rpm-packaging-guide.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	RPM Scriptlets
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

